Modeling Tools for Vegetable Pest Surveillance and Management

Brittany Barker

Senior Research Associate I Oregon IPM Center and Dept. of Horticulture, OSU PNVA Conference | November 15, 2023

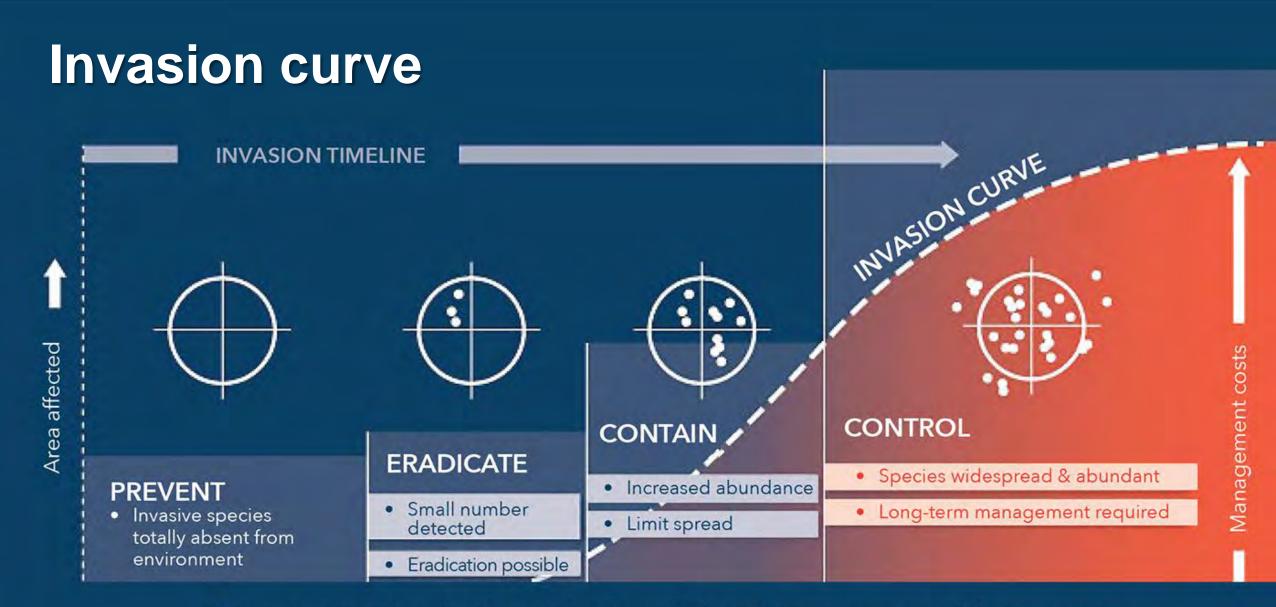
Oregon State University Oregon IPM Center

Outline

- 1) Early detection of invasive species
- 2) Decision-support models
 - Phenology and establishment risk
 - Models at USPest.org
- 3) Future work and key take-aways

Oregon State University Oregon IPM Center

SAFEGUARDING AMERICA'S Lands and Waters from Invasive species


A National Framework for Early Detection and Rapid Response

Biological Invasion, Early Detection & Rapid Response

Biological invasion is the process by which non-native species breach biogeographic barriers and extend their range (McGraw-Hill 2003). In the context of biological invasion, <u>early detection is the process of</u> <u>surveying for, reporting, and verifying the presence of a non-native</u> <u>species, before the founding population becomes established or</u> <u>spreads so widely that eradication is no longer feasible.</u> Rapid response is the process that is employed to eradicate the founding population of a non-native species from a specific location.

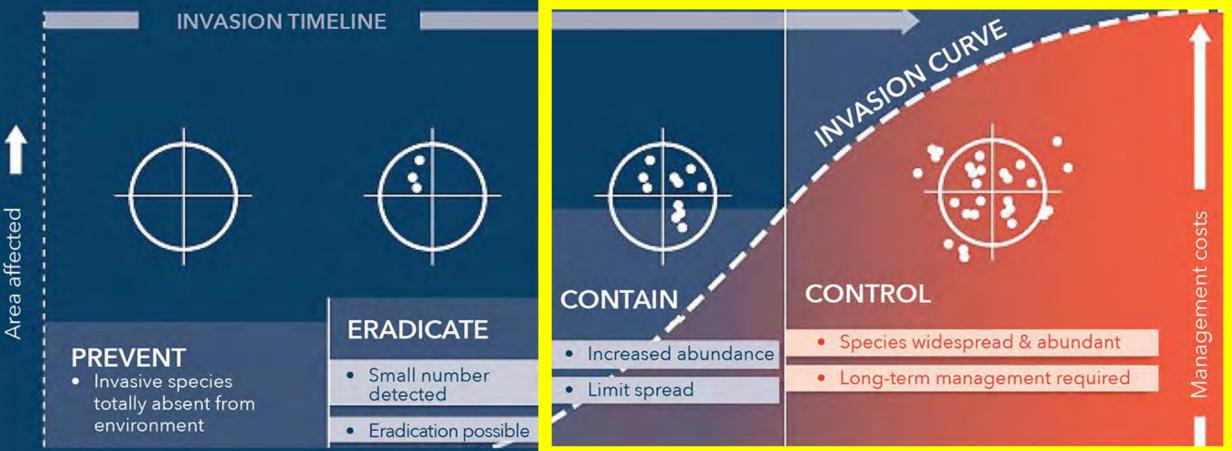
The U.S. Department of the Interior (2016)

The invasion curve describes the arrival and spread of a new invasive species and the management actions required at each stage

Credit: Invasive Species Council

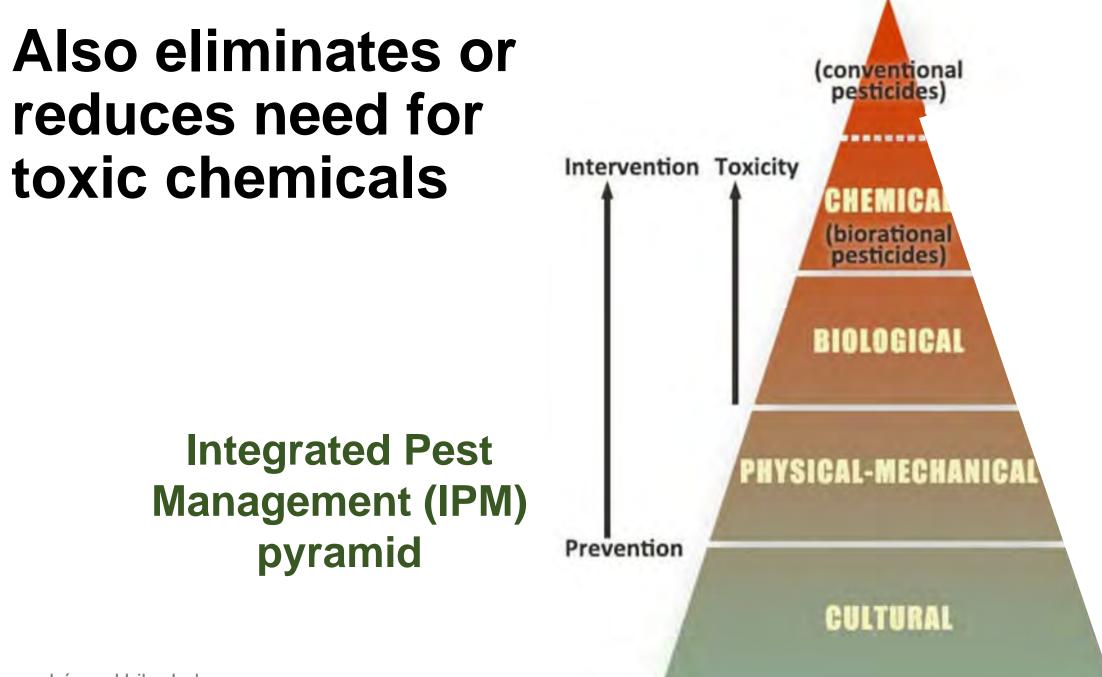
Some examples for PNW (native to Eurasia)

- 1. Cabbage maggot (D. radicum)
- 2. Seedcorn maggot (D. platura)
- 3. Diamondback moth (P. xylostella)
- 4. Carrot rust fly (P. rosae)


pread of a new invasive species and the management uired at each stage

CONTROL

NVASION CURVE


- Species widespread & abundant
- Long-term management required
- I Management costs

Early detection & rapid response helps avoid ... THIS

The invasion curve describes the arrival and spread of a new invasive species and the management actions required at each stage

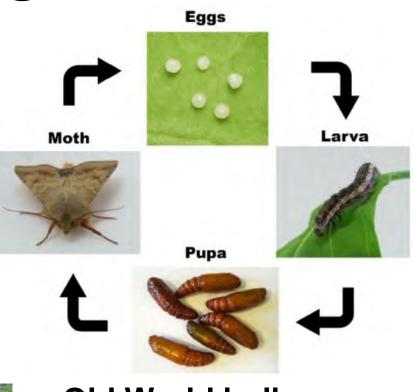
Credit: Invasive Species Council

Source: López-Uribe Lab

Outline

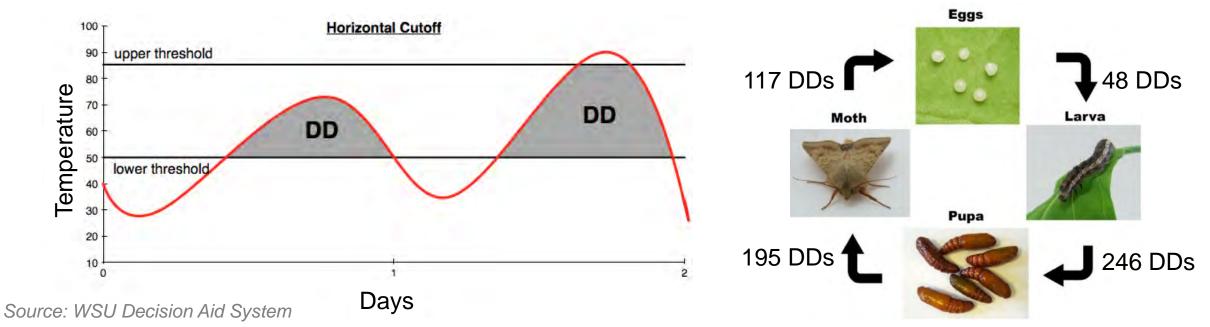
- 1) Early detection of invasive species
- 2) Decision-support models
 - Phenology and establishment risk
 - Models at USPest.org
- 3) Future work and key points

Oregon State University Oregon IPM Center


Models help prevent & manage invasions

Phenology models

- Predict development and activities
- Know <u>when</u> to look
- Install detection devices on time, timely monitoring and management

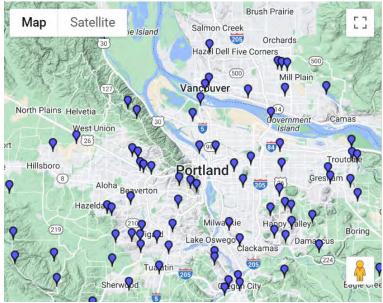

Old World bollworm (Helicoverpa armigera)

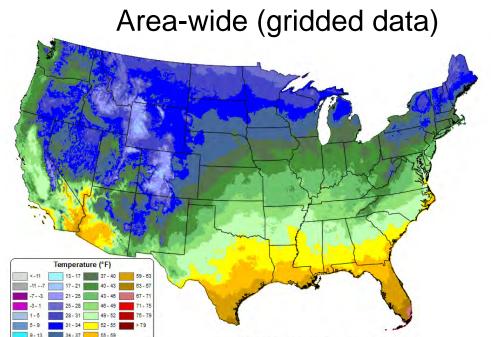
- Not established in U.S.
- Attacks >180 species inc. corn, soybean, tomato

Phenology models 101

Many phenology models calculate degree-days (DDs)

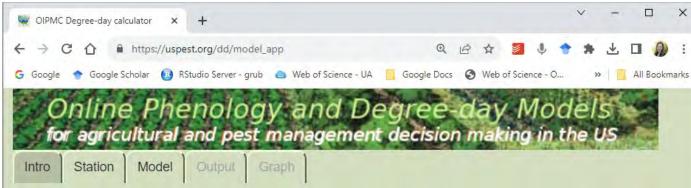
- Unit of heat whereby temperature is integrated over time
- DDs start/stop accumulating at temperature thresholds
- A certain number of DDs are required to reach each life stage




Phenology models 101

Degree-day model inputs

- 1. Information on target species (e.g., temperature thresholds)
- 2. Daily temperature (max, min) data


Single site (weather station)

Copyright (c) 2015, PRISM Climate Group, Oregon State University

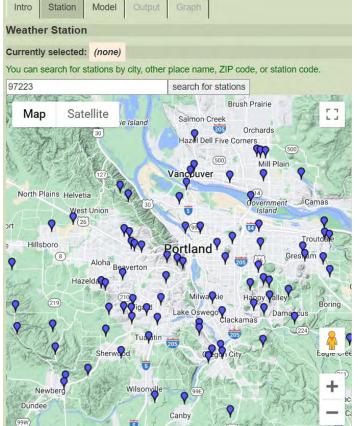
Single-site phenology models at USPest.org

Introduction:

This phenology model/degree-day calculator uses weather data to calculate degree-days, also known as heat units that are used to estimate development of many organisms, such as insects and plants.

This app is a re-designed, mobile-friendly, member of a family of online model/calculators at: USPEST.ORG (home page). The numerous models served by this app are all driven only by daily maximum and minimum temperatures, using one of many different degree-day calculation formulas, many of which are described at this UC Davis IPM website. Note that this app **requires an internet connection** and will not work in airplane or off-line mode.

- + Instructions for Use:
- + The Station Tab:
- + The Model Tab:
- + The Output Tab:
- + The Graph Tab:
- + Email Subscriptions:
- + Credits:


Quick stats

- Open access
- Total of **144** models (crops, disease, insects, weeds..)
- 28 invasive insect models
- 32,000+ weather stations

https://uspest.org/dd/model_app

Single-site phenology models

Intro	Station	Model	Output	Graph	1			
old wor	ld bollworr	m at F5278	3, FW5278	Portland	OR, 2023	3		
Specie	s / Mode	L						
	model or sj d temperatu	the second second		and the second second		ur own cal	culation me	thod and
Model category invasive insects								
Model								
old wor	d bollworm	(H armig.)	(OSU OIF	MC mode	el analysis)		~
Dates								
Model is	designed t	o start on f	ixed date:	Jan 1				
	an v 1 v ec v 31 v]					
Option	IS							
Forec	ast type: af	ter 7 days,	use NMN	IE extend	ed seasor	al forecas	t∽	
Tempera	ture scale:	Fahrenhe	it 🗸					
Next								
	I the neces and "Grapi				study the	model det	ails below, o	or go to tl
		AS IN	-		a	0100		
	-		5	10	65	2		

Helicoverpa armigera [cotton, corn, others] invasive insect model of OSU OIPMC model analysis

(2) Enter dates & options

Intro Station Model Output Graph

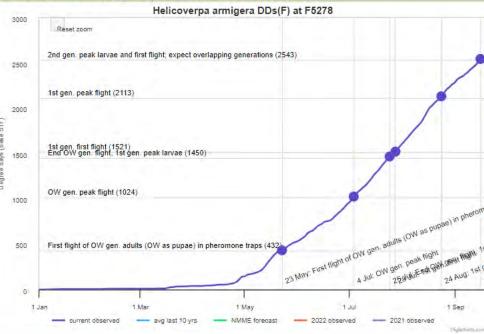
old world bollworm at F5278, FW5278 Portland OR, 2023

Model Inputs

show model inputs table

Date Comparison

show Date Comparison table


Model Output

show full table

Temperatures (and degree-days) are in F; rain in inches

date	max	min	rain	DDs today	DDs cumu	QA	events
1-1	47	37	0.00	0.0	0		* START *
5-23	65	44	0.00	5.3	433		First flight of OW gen. adults (OW as pupae) in pheromone traps
7-4	94	56	0.00	24.0	1026		OW gen. peak flight
7-25	80	62	0.00	20.0	1469		End OW gen. flight, 1st gen. peak larvae
7-28	86	58	Μ	20.7	1523	Hx	1st gen. first flight
8-24	92	55	0.01	22.5	2134		1st gen. peak flight
9-16	85	56	0.00	19.5	2546		2nd gen. peak larvae and first flight; expect overlapping
Intro	0) 5	Station	n N	lodel	Outpu	rt]	Graph

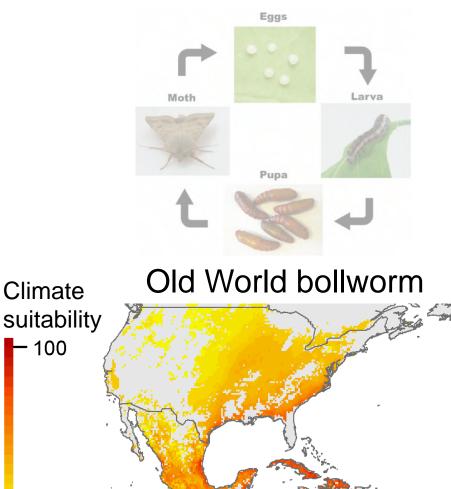
old world bollworm at F5278, FW5278 Portland OR, 2023

(1) Choose station

(3) View outputs (tabular or graph)

https://uspest.org/dd/model_app

Models help prevent & manage invasions


Phenology models

- Predict development and activities
- Know <u>when</u> to look
- Install detection devices on time, timely monitoring and management

Establishment risk models

- Identify areas with suitable climates and hosts
- Know <u>where</u> to look
- Focus surveillance efforts in high risk areas

Spatial models at USPest.org

- DDRP: open-source spatial modeling tool at USPest.org
- Combines phenology <u>and</u> establishment risk modeling
- Produces maps (not single sites) for 16 invasive insect species
- Applications: primarily for surveillance, but management for some species

:= README.md An introduction to DDRP Degree-Days, Risk, and Phenological **Oregon State University** event **Oregon IPM Center** mapping

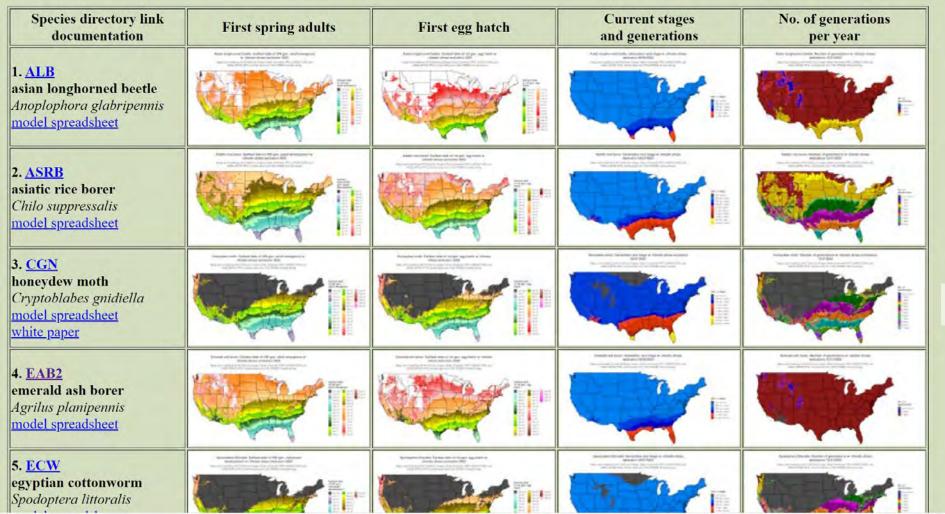
Brittany Barker, Len Coop, Tyson Wepprich, Gericke Cook, and Dan Upper

https://uspest.org/CAPS

Spatial models run every 2-3 days; forecasts available at uspest.org/CAPS

-	Species	Common Name	Status in CONUS
	Agrilus planipennis	Emerald ash borer	Present
	Anoplophora glabripennis	Asian longhorned beetle	Present
1	Autographa gamma	Silver Y moth	Not pres.
1	Chilo suppressalis	Asiatic rice borer	Not pres.
	Cryptoblabes gnidiella	Christmas berry webworm	Not pres.
36	Dendrolimus pini	Pine-tree lappet moth	Not pres.
	Epiphyas postvittana	Light brown apple moth	Present
	Eurygaster integriceps	Sunn pest	Not pres.
	Helicoverpa armigera	Old world bollworm	Not pres.
×	Monochamus alternatus	Japanese pine sawyer beetle	Not pres.
275	Neoleucinodes elegantalis	Small tomato borer	Not pres.
Ars-	Platypus quercivorus	Oak ambrosia beetle	Not pres.
	Spodoptera littoralis	Egyptian cottonworm	Not pres.
30	Spodoptera litura	Common or cotton cutworm	Not pres.
315	Thaumatotibia leucotreta	False codling moth	Not pres.
A.	Tuta absoluta	Tomato leaf miner	Not pres.

Spatial models run every 2-3 days; forecasts available at uspest.org/CAPS


Vegetable pests

	Species	Common Name	Status in CONUS
	Agrilus planipennis	Emerald ash borer	Present
	Anoplophora glabripennis	Asian longhorned beetle	Present
· Antonio	Autographa gamma	Silver Y moth	Not pres.
10	Chilo suppressalis	Asiatic rice borer	Not pres.
	Cryptoblabes gnidiella	Christmas berry webworm	Not pres.
348	Dendrolimus pini	Pine-tree lappet moth	Not pres.
	Epiphyas postvittana	Light brown apple moth	Present
	Eurygaster integriceps	Sunn pest	Not pres.
J.	Helicoverpa armigera	Old world bollworm	Not pres.
	Monochamus alternatus	Japanese pine sawyer beetle	Not pres.
ars.	Neoleucinodes elegantalis	Small tomato borer	Not pres.
Ars.	Platypus quercivorus	Oak ambrosia beetle	Not pres.
	Spodoptera littoralis	Egyptian cottonworm	Not pres.
36	Spodoptera litura	Common or cotton cutworm	Not pres.
218	Thaumatotibia leucotreta	False codling moth	Not pres.
	Tuta absoluta	Tomato leaf miner	Not pres.

Home page and directory of selected Degree-Day, establishment Risk, and Pest event maps (DDRP)

Summary An improved understanding of *where* an invasive species could potentially establish as well as *when* developmental stages are expected to occur have the potential to support and dramatic pest surveillance and management decisions. We have developed a new spatial modeling platform that integrates mapping of phenology and climatic suitability in real-time to provide timely and contrast when invasive insect species could potentially invade the conterminous United States. The Degree-Days, Risk, and Phenological event mapping (DDRP) platform serves as an open-source and decision support tool that can predict the potential distribution, number of generations, life stages present, and dates of phenological events of a target species. DDRP is written entirely in R, makin capitalizes on multiple R packages to generate gridded and graphical outputs. Currently we are using DDRP to model 15 high-priority invasive insect species (see below), but its process-based mode broad spectrum of organisms with temperature-dependent development. The DDRP platform will enhance efforts to prevent, monitor, and manage new and emerging invasive pests in the United St

Full paper available 12/31/2020 at: Barker et al. (2020) Open source code at: https://github.com/bbarker505/ddrp_v2 Guide for users including platform requirements (updated 10/28/2020)

https://uspest.org/CAPS

Example for Old World bollworm: 2023

Too

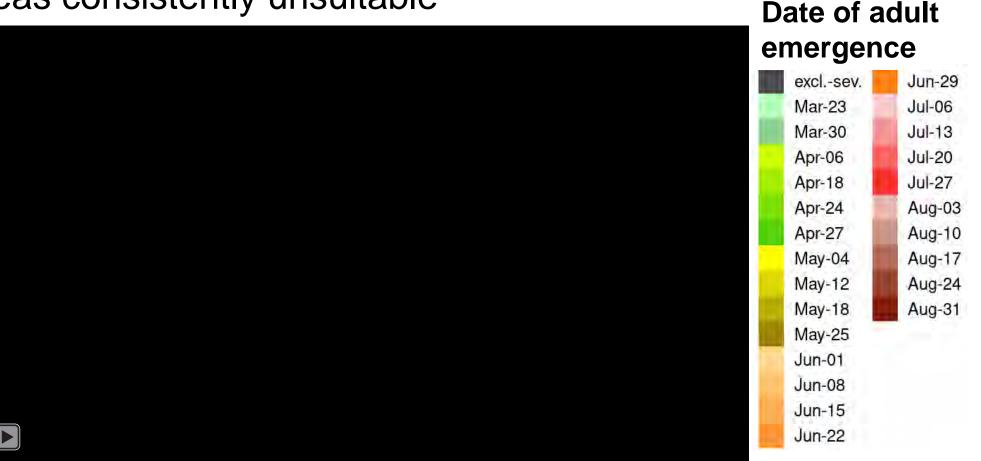
hot

Too cold

Date of adult emergence 2023

	exclsev.	Jun-04
1	Feb-26	Jun-11
	Mar-05	Jun-18
	Mar-12	Jun-25
	Mar-19	Jul-02
	Mar-26	Jul-09
	Apr-02	Jul-16
	Apr-09	Jul-23
	Apr-16	Jul-30
	Apr-23	Aug-06
	Apr-30	Aug-13
	May-07	Aug-20
	May-14	Aug-27
	May-21	Sep-03
	May-28	

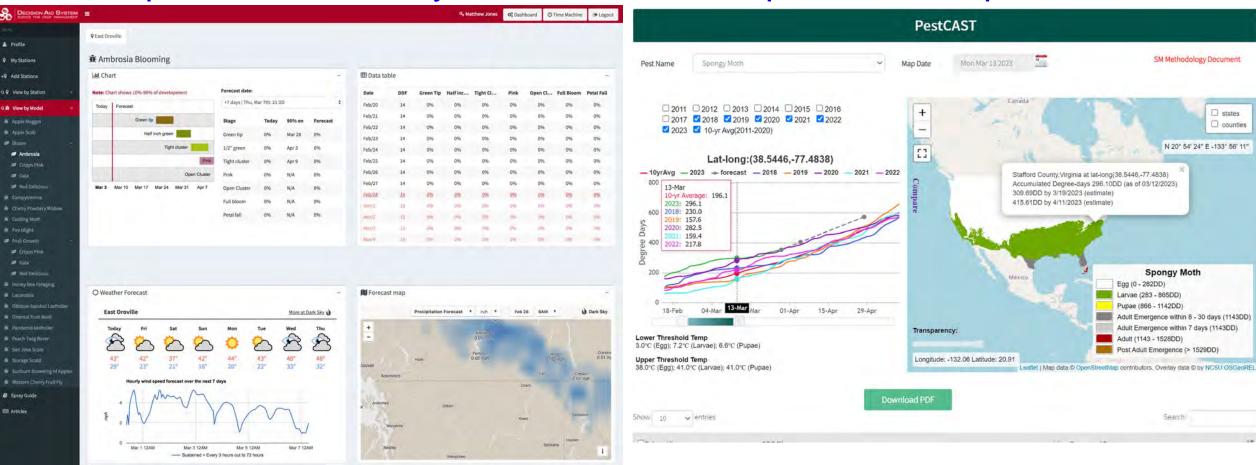
Old world bollworm (Helicoverpa armigera)



Forecasts for last 11 years (2013-2023)

- Adult emergence varies annually by as much as 1 month
- Some areas consistently unsuitable

Old world bollwori (Helicoverpa armige


Other decision support models

WSU Decision Aid System

SAFARIS System

https://decisionaid.systems

https://safaris.cipm.info

https://treefruit.wsu.edu/tools-resources/wsu-das/

Takeuchi et al. (2023) Frontiers in Insect Science

Other decision support models

USA National Phenology Network Pheno Forecast series

Home » Pheno Forecasts

Pheno Forecast maps estimate when plants and animals undergo key life cycle stages. For example, for spongy moth, the maps forecast when caterpillars will be present.

PUBL

Image credit: David Cappaert, Bugwood.org

PHENO FORECASTS

The USA-NPN Pheno Forecasts indicate when insect pests and invasive species will reach life stages critical for monitoring and management in your region.

Outline

- 1) Early detection of invasive species
- 2) Decision-support models
 - Phenology and establishment risk
 - Models at USPest.org
- 3) Future work and key takeaways

Oregon State University Oregon IPM Center

Future work

Develop spatial models for new invasive species

Brown rot *Monilinia* spp.

Japanese beetle *Popillia japonica*

Cheatgrass Bromus tectorum

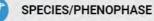
Emerald ash borer *Agrilus planipennis* (Completed 2023)

Spotted lanternfly Lycorma delicatula (Nearing completion)

Photo credits: Matt Bertone, Lawrence Barringe

Collaboration w/ USA National Phenology Network http://usanpn.org/data/forecasts/EAB

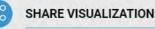
Explore phenological findings


VISUALIZATION TYPE Map

BASE LAYER

Emerald Ash Borer Adult March 31, 2023

BOUNDARY


YEAR 2023

FEATURES

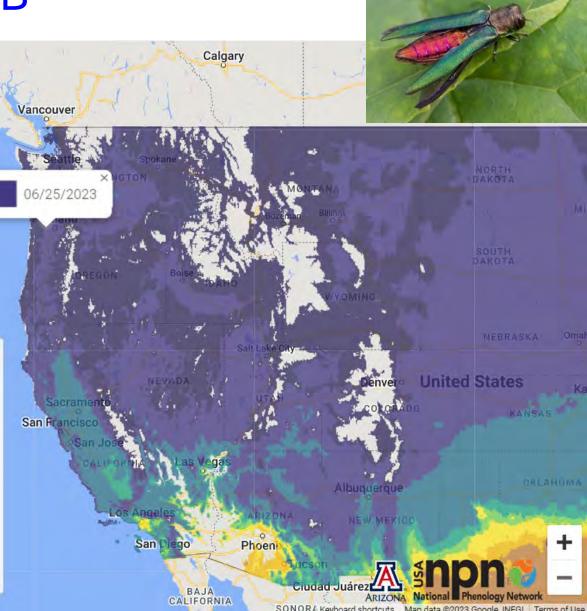
Data precision filter: 30 days

RESET VISUALIZATION

Copy link to clipboard

Events

- Adult emergence
- Egg hatch



E-mail notifications

More than 3 Months Ago 3 Months Ago 2 Months Ago Last Month This Week Next Week In 2 Weeks In 3 Weeks Next Month In 2 Months In more than 2 Months

Google

Emerald Ash Borer Adult Forecast, March 31, 2023 USA National Phenology Network, www.usanpn.org

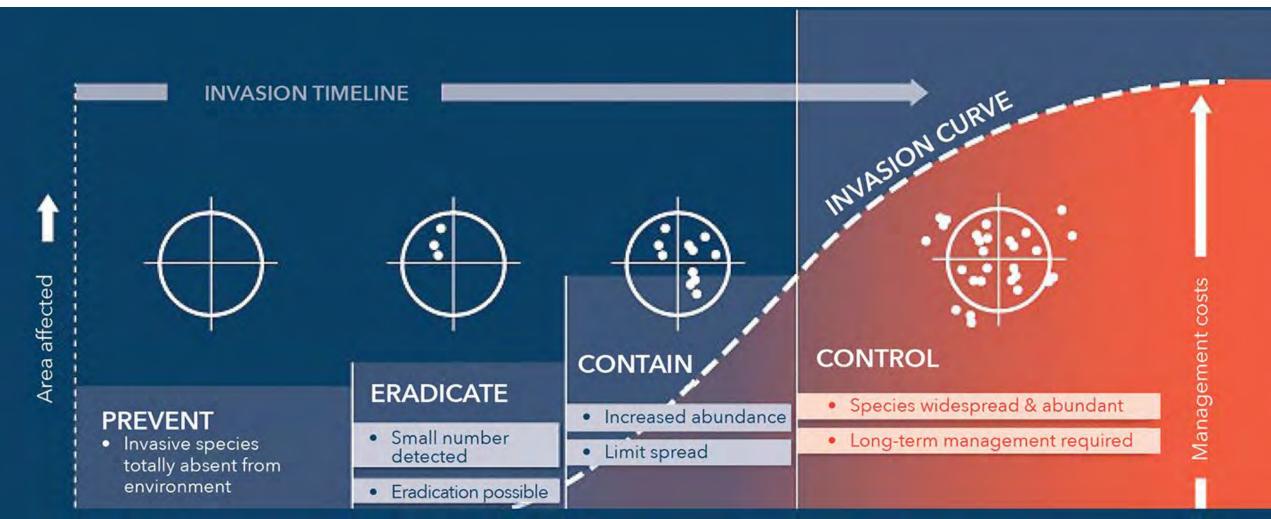
Future work

Develop spatial models for new invasive species

Brown rot Monilinia spp.

Japanese beetle *Popillia japonica*

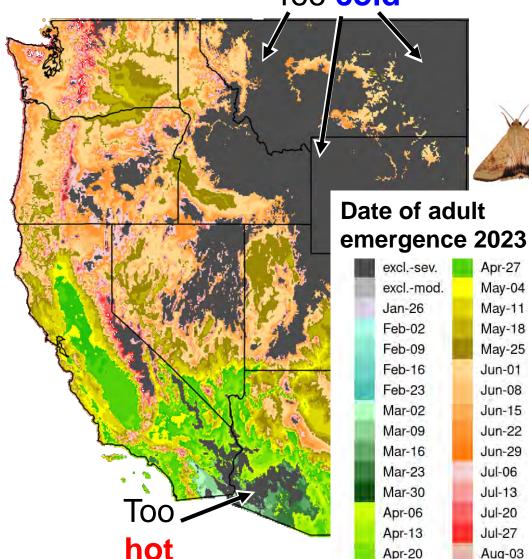
Cheatgrass Bromus tectorum


Emerald ash borer *Agrilus planipennis* (Completed 2023)

Spotted lanternfly Lycorma delicatula (Nearing completion) Conduct outreach and solicit observations for model validation

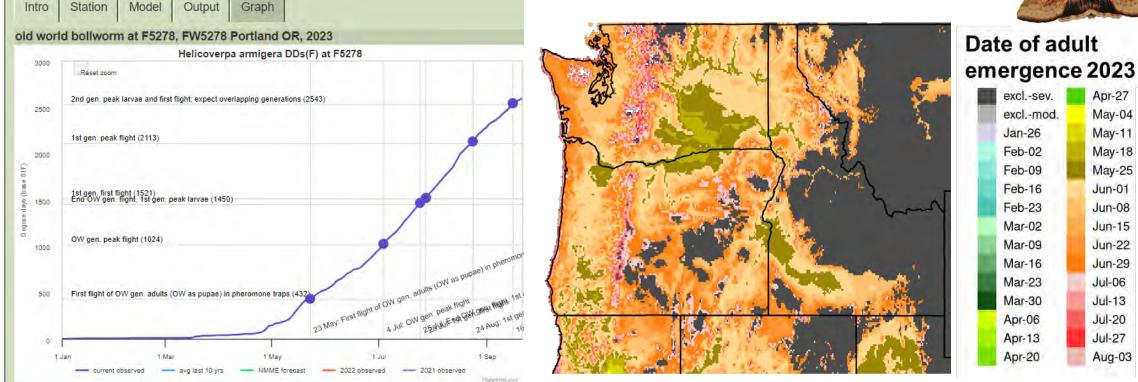
Takeaway #1: prevention and eradication are the most cost-effective and environmentally safe approaches for dealing with invasives

Takeaway #2: Models can help us preventand respond to invasionsToo cold


Phenology models

 Know <u>when</u> to expect a life stage targeted by surveillance or management

Establishment risk models


Know <u>where</u> to focus search efforts

Takeaway #3: Forecasts at USPest.org

Forecasts from single-site phenology models (N=144) and spatial models (N=16) freely available

Thank you!

USPest.org

- Site-based models: https://uspest.org/wea
- Spatial models: https://uspest.org/CAPS

<mark>Oregon State University</mark> Oregon IPM Center

USDA ANIFA SERROP DOD - EPA - DOE

Other resources

- Oregon IPM Center (info hub) https://agsci.oregonstate.edu/oipmc
- WSU Decision Aid System https://decisionaid.systems
- SAFRIS system https://safaris.cipm.info
- USA National Phenology Network Pheno Forecasts

https://www.usanpn.org/news/forecasts

